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Abstract Kinetic resolution of a-lipoic acid, a case of

remote stereocenter discrimination, was accomplished

using lipase from Aspergillus oryzae WZ007. Performance

of this lipase was investigated for enantioselective esteri-

fication of (S)-a-lipoic acid, leaving the target product

(R)-a-lipoic acid in unreacted form. The effects of chain

length of alcohol, type of solvent, molar ratio of alco-

hol:acid, and reaction temperature were studied. The

optimum reaction conditions were found to be esterifica-

tion with n-octanol at 50�C in heptane with an alcohol:acid

molar ratio of 5:1. The conversion rate of a-lipoic acid was

75.2%, with an enantiomeric excess of 92.5% towards

unreacted substrate in a reaction time of 48 h.

Keywords a-Lipoic acid � Remote stereocenter �
Lipase � Aspergillus oryzae � Kinetic resolution

Introduction

a-Lipoic acid, which has been isolated [1] from natural

sources and identified as the R configuration [2], is a

growth factor for a variety of microorganisms and a

cofactor involved in many enzyme-catalyzed reactions,

particularly in decarboxylation of a-keto acids [1, 3–5].

Since a-lipoic acid exhibits a high level of biological

activity, its use in the treatment of various diseases has

been investigated. For example, it shows effects in diabetes

mellitus [5] and hepatic diseases [6, 7] as well as anti-

oxidative [8, 9], anti-inflammatory [10] and immunological

activity [11]. Recently, it has also been reported that

a-lipoic acid and its derivatives are highly active as anti-

HIV [12, 13] and anti-tumor agents [14].

Generally, the (R)-enantiomer is much more active than

the (S)-enantiomer [15]. Therefore, great attention has been

focused on the stereoselective synthesis of pure (R)-enan-

tiomer. There are two main specific routes for the synthesis

of (R)- and (S)-a-lipoic acid by chemical methods, including

asymmetric synthesis [16–18] and a strategy starting from

‘chiral pool’ material [2, 19–23]. Various methods of

enzyme catalysis, such as enzyme-catalyzed reactions of

key intermediates or precursors [24–28] and kinetic reso-

lution of racemic material [29], have also been developed.

Lipase-catalyzed kinetic resolution of a-lipoic acid involves

esterifying the carboxylic group located four carbon atoms

away from the stereogenic center. Although several exam-

ples of enzymatic resolution of key compounds with remote

stereocenters have been reported [30–34], in practice,

enzymatic or classical resolution involving a remote chiral

center remains a difficult task. To date, no enzymes

have been reported to enable kinetic resolution of racemic

a-lipoic acid except for the commercially available Candida

rugosa lipase, which shows enantioselectivity towards the

(S)-enantiomer. However, results obtained with this latter

enzyme are unsatisfactory, with a low enantiomeric excess

of 23.8% towards (R)-a-lipoic acid [29]. In this study, lipase

from Aspergillus oryzae WZ007 was used to catalyze kinetic

resolution of a-lipoic acid. We present evidence to suggest

that this enzyme can enantioselectively esterify (S)-a-lipoic

acid to the corresponding (S)-ester (Scheme 1), and that the

residual (R)-a-lipoic acid can be recovered by extraction

with an enantiomeric excess of 92.5%. Various reaction

parameters affecting the conversion rate and enantioselec-

tivity were investigated.
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Materials and methods

Chemicals and reagents

a-Lipoic acid was purchased from Fluka BioChemika

(Buchs, Switzerland). Porcine pancreas lipase (Type II)
was purchased from Sigma (St. Louis, MO). Lipases from

Penicillium expansum and Aspergillus niger were pur-

chased from Shenzhen Leveking Bio-engineering

(Shenzhen, Guangdong, China). All the other chemicals

were obtained from commercial sources and were of ana-

lytical reagent grade.

Microorganisms and culture conditions

The strain of Aspergillus oryzae WZ007 was newly isolated

from lipase-producing strains and deposited with the China

Center for Type Culture Collection with the accession

number of CCTCC No. M206105. The strain was main-

tained on slant medium consisting of potato 200 g/l, glucose

20 g/l and agar 17 g/l. The culture was grown aerobically at

30�C and 200 rpm for 48 h in cell growth medium con-

sisting of glucose 10 g/l, peptone 5 g/l, KH2PO4 1 g/l,

MgSO4 � 7H2O 0.5 g/l, FeSO4 � 7H2O 0.01 g/l, KCl 0.5 g/l

and olive oil 10 ml/l. After harvesting by centrifugation, the

mycelium was thoroughly washed with distilled water and

100 mM Tris-HCl buffer (pH 7.0) and then dried using a

freeze-drying system (Christ, Osterode am Harz, Germany).

Esterification reaction

In a typical experiment, a-lipoic acid (206 mg, 1 mmol), n-

octanol (0.79 ml, 5 mmol), heptane (20 ml) and lyophi-

lized microbial cells (200 mg) were placed in a conical

flask (100 ml). The reaction mixtures were incubated at

200 rpm and 37�C for 48 h on a shaker. Reaction mixtures

without microbial cells were also run to exclude any pos-

sible spontaneous chemical reaction. The esterifying

reaction was quenched by removing mycelium or enzyme

powder through centrifugation. Unreacted a-lipoic acid

was extracted with 40 ml 0.5% (w/v) sodium bicarbonate

and recovered after acidification with 20% (v/v) hydro-

chloric acid and extraction with dichloromethane.

Dichloromethane was removed by vacuum distillation and

the recovered a-lipoic acid was dissolved in acetonitrile for

subsequent high performance liquid chromatography

(HPLC) analysis.

Analytical methods

Conversion rate and enantiomeric excess of a-lipoic acid

were assayed by HPLC 1100 (Agilent, Wilmington, DE)

with a Chiralpak AS-H column (250 mm 9 4.6 mm,

5 lm, Daicel, Hyogo, Japan). The mobile phase was

composed of hexane/2-propanol/trifluoroacetic acid at a

ratio of 97/3/0.1. The flow rate was 0.8 ml/min. Absor-

bance of column effluents was monitored at 220 nm.

Enantioselectivities (E values) were calculated from con-

version rate and enantiomeric excess according to the

following equation [35].

E ¼ ln½ð1� cÞð1� eeSÞ�
ln½ð1� cÞð1þ eeSÞ�

c ¼ c0 � ce

c0

� 100%

ees ¼
½R� � ½S�
½R� þ ½S� � 100%

where c is the conversion ratio of reaction, c0 the initial

amount of racemic a-lipoic acid, ce the amount of racemic

a-lipoic acid at the end of reaction, and ees is the enan-

tiomeric excess of the residual a-lipoic acid; [R] and [S] are

the peak areas corresponding to the (R)-a-lipoic acid iso-

mer and (S)-a-lipoic acid isomer, respectively.

Results and discussion

Screening of lipase

Lipases from Penicillium expansum, Aspergillus niger,

porcine pancreas and Aspergillus oryzae WZ007 were used

in this study. Lipase powder from P. expansum, A. niger and

porcine pancreas were commercially available. Lipase from

A. oryzae WZ007 was produced by fermentation. A strain of

A. oryzae WZ007 with high activity and enantioselectivity

towards biotin intermediate 1,3-dibenzyl-5-(hydroxy-

methyl)-2-oxo-4-imidazolidinecarboxylic acid was newly

isolated from soil samples by our team in a previous study

[36]. Esterification reactions of racemic a-lipoic acid using

the four lipases demonstrated that only the lipase from

Aspergillus oryzae WZ007 exhibited high esterification

ability and enantioselectivity towards the (S)-enantiomer.

The other three lipases showed the opposite enantioselec-

tivity. Hydrolysis of the (R)-a-lipoic acid esters formed is

S S

COOH

R'OH+
Lipase

Heptane
+

(R)
S S

COOH

S S

COOR'

(S)

R' = n-Bu, n-Pen, n-Hex, n-Oct, n-Dec, n-Dodec

Scheme 1 Kinetic resolution of

racemic a-lipoic acid by lipase

from Aspergillus oryzae WZ007
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thus also a potential alternative route to produce (R)-a-lipoic

acid. a-Lipoic acid could not be esterified for the reaction

system in the absence of enzyme. In this work, lipase from A.

oryzae WZ007 was chosen for further studies.

Optimization of esterification conditions

Effect of alcohol chain length

To investigate the effect of alcohols with different chain

length on the conversion rate and enantioselectivity,

esterification reactions of a-lipoic acid in heptane were

carried out with n-butanol (C4), n-pentanol (C5), n-hexanol

(C6), n-octanol (C8), n-decanol (C10) and n-dodecanol

(C12), respectively. The results in Table 1 indicate that

there was a marked tendency for the enantioselectivity,

together with the conversion rate, to rise as the alcohol

chain length increased up to n-octanol. Use of alcohols

with longer chains, such as n-decanol and n-dodecanol, did

not increase the resolution of a-lipoic acid further. Thus,

n-octanol was chosen for further study. Similarly, longer

alcohols, such as n-octanol and n-decanol, resulted in a

higher initial rate and enantioselectivity than n-hexanol

when enantioselective esterification of ibuprofen was cat-

alyzed by Candida rugosa lipase in isooctane [37]. The

results suggested a mode of binding of the acyl donor

(acid) in a hairpin conformation that leaves the active site

tunnel empty to accommodate the acyl acceptor (alcohol)

[38]. The exact location of the alcohol molecule in the

tunnel is crucial for the enantioselectivity of the lipase, and

the optimal carbon chain length of alcohol would therefore

fit the active site tunnel of the lipase to provide both high

enzyme activity and enantioselectivity [39].

Effect of solvents

It has been demonstrated that the activity and enantiose-

lectivity of lipases is greatly affected by the nature of the

non-aqueous solvent used when catalysis occurs in a nearly

anhydrous environment [40, 41]. The effects of various

organic solvents, ranging from hydrophobic to hydrophilic,

were tested in the typical esterification reaction experi-

ment, replacing heptane with the other organic solvents.

The log P-value of the solvents was the usual parameter

taken to express solvent hydrophobicity and its possible

effects on enzyme activity in the non-aqueous phase [41].

The results are shown in Table 2. In hydrophobic solvents,

the conversion rate increased with increase in log P values,

reaching a maximum value of 71.8% in hexane (log

P = 3.5). Enantioselectivity increased with increasing log

P values up to 4.3 in heptane. No conversion occurred in

hydrophilic solvents such as tetrahydrofuran, acetonitrile

and acetone. The highest enantiomeric excess of (R)-a-

lipoic acid (ees = 74.6%), enantioselectivity (E = 4.3)

was obtained using heptane. The activity and enantiose-

lectivity of an enzyme decreases as the hydrophobicity of

the solvent decreases, and hydrophilic solvents may alter or

denature enzymes by stripping off essential water from the

enzyme [42]. More hydrophilic organic solvents can result

in conformational changes in the enzyme that affect the

affinity of the substrate-binding site for its ligand and the

enantioselectivity of the enzyme [39].

Effect of molar ratio of n-octanol to acid

In enzymatic stereoselective esterification reactions, alco-

hols act as nucleophiles and their concentration is known to

affect reaction rate and enantioselectivity. Enantio-selec-

tive esterification reactions were carried out at five

different molar ratios of n-octanol to acid, i.e., 4:1, 5:1, 6:1,

7:1, and 8:1, respectively. As shown in Fig. 1, upon

increasing n-octanol concentration in the esterification

Table 1 Effects of alcohol chain length on the conversion rate and

enantioselectivity of esterification of a-lipoic acid

Alcohol c (%) ees (%) E

n-Butanol 52.1 14.7 1.5

n-Pentanol 57.3 35.7 2.4

n-Hexanol 65.1 64.5 3.8

n-Octanol 68.0 74.6 4.3

n-Decanol 68.8 73.5 4.1

n-Dodecanol 67.6 72.7 4.2

Reaction conditions: 1 mmol of racemic a-lipoic acid, 5:1 molar ratio

of alcohol to racemic a-lipoic acid and 200 mg microbial cells in

20 ml heptane, reaction temperature = 37�C, reaction time = 48 h,

shaking at 200 rpm

Table 2 Effects of different organic solvents on the conversion rate

and enantioselectivity of esterification of a-lipoic acid

Solvent Log P c (%) ees (%) E

Isooctane 4.5 65.4 68.1 4.1

Heptane 4.0 68.0 74.6 4.3

Hexane 3.5 71.8 72.7 3.6

Cyclohexane 3.2 63.6 51.4 2.9

Toluene 2.5 45.4 27.1 2.5

Tetrahydrofuran 0.49 NAa 0 NDb

Acetone -0.25 NA 0 ND

Acetonitrile -0.34 NA 0 ND

Reaction conditions: 1 mmol of racemic a-lipoic acid, 5:1 molar ratio

of n-octanol to racemic a-lipoic acid and 200 mg microbial cells in

20 ml organic solvent, reaction temperature = 37�C, reaction

time = 48 h, shaking at 200 rpm
a No activity
b No data
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reaction, the conversion rate and enantioselectivity

increase up to an optimum of 68.0% and E = 4.3 (ratios

5:1 or 6:1), respectively. However, when the n-octanol

concentration increased further (ratios 7:1 and 8:1),

enantioselectivity dropped. A good explanation for the

observed change in enantioselectivity is that the two dia-

stereomeric acyl-enzymes have different Km values for the

alcohol. A typical case of this would be a situation where

both acyl-enzymes are saturated with alcohol at the high

concentration, whereas at the low concentration only the

S-acyl-enzyme is saturated, leading to a higher E-value

[43]. This is also explained at a molecular level by a

molecular modeling study. In contrast to the fast-reacting

enantiomer, the slow-reacting R-enantiomer leaves the

tunnel empty. It is thus suggested that the alcohol coordi-

nates to the tunnel and inhibits the fast-reacting but not the

slow-reacting enantiomer. An increased alcohol concen-

tration would therefore decrease the enantioselectivity [38].

Effect of temperature

The esterification reaction of a-lipoic acid and n-octanol

catalyzed by whole-cell lipase from A. oryzae WZ007 was

carried out in heptane at temperatures ranging from 32 to

55�C. The results (shown in Fig. 2), demonstrate that both

the conversion rate and enantioselectivity increase with

increasing reaction temperature up to 50�C. At higher

temperatures, the conversion rate and enantioselectivity

decreased gradually. A reaction temperature of 50�C was

selected as an optimum temperature for the reaction as it

exhibited the highest enantioselectivity and appropriate

conversion of 75.2% with an ees of 92.5% at a reaction

time of 48 h.

Conclusions

Lipase from A. oryzae WZ007 can enantioselectively

esterify (S)-a-lipoic acid, leaving the target product (R)-a-

lipoic acid in the unreacted form, although the reaction

center is four carbon atoms away from the stereogenic

center. The effects of various reaction parameters on the

performance of lipase from A. oryzae WZ007 in the

preparation of enantiopure (R)-a-lipoic acid were studied.

When a-lipoic acid was esterified with n-octanol at 50�C in

heptane for 48 h with a molar ratio of alcohol to acid of

5:1, the enantiomeric excess of (R)-a-lipoic acid could

reach as high as 92.5%, with a conversion rate of 75.2%.
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